Background

The UK has limited knowledge regarding our pet dog population. Based on public surveys, previous estimates of population size have varied between 8.5-11.6 million [1,2,3]. However, public surveys are costly initiatives, and as such, participant numbers remain constrained. This has led to significant knowledge gaps and potentially unreliable pet dog population estimates.
In 2011, Dr. Asher and colleagues approached this challenge from a fresh perspective [4]. They enriched public survey data with existing datasets. This provided a more robust population estimate of 9.4 million pet dogs. However, due to limited project collaborators (Kennel Club, veterinary practices, and Sainsbury's pet insurance), the researchers could only confidently suggest that the true figure fell somewhere between 3.6 million and 21.5 million (range $=17.9$ million). This suggests that the commonly referenced PFMA estimate of 8.5 million [${ }^{1}$], may be a substantial underestimate.

Aims

 definitive estimation of the UK pet dog population. More specifically, we aim to:- Establish a population baseline which will provide significant analytical benefits to welfare, epidemiological and business corporations alike, as it will allow for the development of network analyses and targeted strategies, while providing a greater understanding of the dog population, including spatial density and distribution, demographics and regional trends.
- Identify interventions that successfully impact upon the availability of puppies from irresponsible breeders and limit/block the illegal trade of puppies into the UK, thus minimising welfare implications and disease transmission.

Mefhods

Step 2

 Download data from project participants. Clean datasets via R programming to ensure standard formatting. Merge all datasets to build one comprehensive dataset, incorporating common elements such as partial postcodes and/or microchip numbers.
Step 3

Use common elements across different sources to identify duplication of individuals. This allows us to: (1) quantify proportional coverage between datasets; and (2) remove repeat individuals to ensure that the final population estimate is not artificially inflated.

Step 1
Engage with external stakeholders. Consistency of variables is vital as we anticipate the presence of duplicate records across multiple data sources. Consequently, all project participants are asked to provide data listed in Table 1 (Options A - C, when Option A is preferred).

Step 4 Knowledge of proportional coverage will enable us to apply a hierarchical Bayesian approach to multi-state mark-recapture. This will allow us to establish a population baseline, and map spatia density, distribution, demographics and regional trends within the UK.

